New research shows that equatorial waves — pulses of warm ocean water that play a role in regulating Earth’s climate — are driven by the same dynamics as the exotic materials known as topological insulators.
Topological insulators, materials that insulate on the inside but conduct electricity along their outer edges, have created quite a buzz in condensed matter physics. Now a new study in the journal Science shows that the same topological behavior that governs these exotic materials also drives equatorial waves — pulses of warm ocean water that play a major role in regulating the Earth’s climate, including the El Niño-Southern Oscillation.
“These waves were discovered by geophysicists in the 1960s, but they lacked a deep understanding of why they existed,” said Brad Marston, a physics professor at Brown University and coauthor of the new study. “What we’ve shown is that they have the same origin as the waves that are important in solid state physics — the waves of electrons that travel around the edges of topological insulators.”
The research was inspired by a special type of topological insulator that exhibits what’s known as the quantum Hall effect, which was discovered in 1980. The topology plays an essential role in the quantum Hall effect was recognized by the 2016 Nobel Prize in physics that was awarded to trio of physicists, including Brown University’s Michael Kosterlitz.
Continue reading at Brown University
Image via Brown University