Once invincible superbug squashed by 'superteam' of antibiotics

Typography

The recent discovery of E. coli carrying mcr-1 and ndm-5 — genes that make the bacterium immune to last-resort antibiotics — has left clinicians without an effective means of treatment for the superbug.

But in a new study, University at Buffalo researchers have assembled a team of three antibiotics that, together, are capable of eradicating the deadly bacterium. The groundbreaking research was recently published in mBio, a journal for the American Society of Microbiology.

The recent discovery of E. coli carrying mcr-1 and ndm-5 — genes that make the bacterium immune to last-resort antibiotics — has left clinicians without an effective means of treatment for the superbug.

But in a new study, University at Buffalo researchers have assembled a team of three antibiotics that, together, are capable of eradicating the deadly bacterium. The groundbreaking research was recently published in mBio, a journal for the American Society of Microbiology.

The researchers found that a novel combination of aztreonam, amikacin and polymyxin B — a last-resort antibiotic — was able to kill E. coli carrying mcr-1 and ndm-5 genes within 24 hours while also preventing regrowth. Traditional combinations of these antibiotics were unable to kill the E. coli and resulted in rapid resistance.

“The threat of gram-negative bacteria, including E. coli carrying mcr-1, is worrisome,” says Zackery Bulman, PharmD, first author on the study, a graduate and former postdoctoral fellow at the UB School of Pharmacy and Pharmaceutical Sciences who is now an assistant professor at the University of Illinois at Chicago College of Pharmacy.

Read more at University at Buffalo

Image: A novel combination of aztreonam, amikacin and polymyxin B was able to kill E. coli carrying mcr-1 and ndm-5 — genes that make the bacterium immune to last-resort antibiotics.

(Credit: University at Buffalo)