Venus's Turbulent Atmosphere

Typography

A research paper published today by Nature Astronomy sheds light on the so far unexplored nightside circulation at the upper cloud level of Venus. Researchers from the Rhenish Institute for Environmental Research at the University of Cologne are part of an international research project which has now presented its preliminary findings. They discovered unexpected patterns of slow motion and abundant stationary waves in Venus’s nighttime sky. 

A research paper published today by Nature Astronomy sheds light on the so far unexplored nightside circulation at the upper cloud level of Venus. Researchers from the Rhenish Institute for Environmental Research at the University of Cologne are part of an international research project which has now presented its preliminary findings. They discovered unexpected patterns of slow motion and abundant stationary waves in Venus’s nighttime sky. 

Venus is often referred to as Earth's twin because both planets share a similar size and surface composition. Also, they both have atmospheres with complex weather systems. But that is about where the similarities end: Venus is one the most hostile places in our solar system. Its atmosphere consists of 96.5 percent carbon dioxide, with surface temperatures of constantly about 500 degrees Celsius. Venus is a slowly rotating planet – it needs about 243 terrestrial days to complete one rotation. We would expect its atmosphere to rotate with the same rhythm, but in fact it takes only four days. This phenomenon is called superrotation, and it causes substantial turbulences in the planet’s atmosphere. The scientists do not yet fully understand its origin and motor, but are working on an answer to this puzzle. The many waves in the planet's atmosphere may play an important role.

The preliminary research results were generated by an international collaboration headed by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA). Experts in space and astronautical science and astrophysics from universities and institutions in Japan, Spain, Italy, and Germany are cooperating in the project. From Germany, the Rhenish Institute for Environmental Research at the University of Cologne and the Center for Astronomy and Astrophysics at the Technical University of Berlin are involved.

Read more at University of Cologne

Image: The atmospheric superrotation at the upper clouds of Venus. While the superrotation is present in both day and night sides of Venus, it seems more uniform in the day (AKATSUKI-UVI image at 360 nm, right side), while in the night this seems to become more irregular and unpredictable (composite of Venus Express/VIRTIS images ar 3.8 μm, left). (Credit: JAXA, ESA, J. Peralta (JAXA) and R. Hueso (UPV/EHU))