A global team of researchers has published the first-ever Wild Emmer wheat genome sequence in Science magazine. Wild Emmer wheat is the original form of nearly all the domesticated wheat in the world, including durum (pasta) and bread wheat. Wild emmer is too low-yielding to be of use to farmers today, but it contains many attractive characteristics that are being used by plant breeders to improve wheat.
A global team of researchers has published the first-ever Wild Emmer wheat genome sequence in Science magazine. Wild Emmer wheat is the original form of nearly all the domesticated wheat in the world, including durum (pasta) and bread wheat. Wild emmer is too low-yielding to be of use to farmers today, but it contains many attractive characteristics that are being used by plant breeders to improve wheat.
The study was led by Dr. Assaf Distelfeld of Tel Aviv University’s School of Plant Sciences and Food Security and Institute for Cereal Crops Improvement, in collaboration with several dozen scientists from institutions around the world and an Israel-based company – NRGene, which developed the bioinformatics technology that accelerated the research.
“This research is a synergistic partnership among public and private entities,” said Dr. Daniel Chamovitz, Dean of Tel Aviv University’s George S. Wise Faculty of Life Sciences, who was also involved in the research. “Ultimately, this research will have a significant impact on global food safety and security.”
“Our ability to generate the Wild Emmer wheat genome sequence so rapidly is a huge step forward in genomic research,” said Dr. Curtis Pozniak from the University of Saskatchewan, a project team member and Chair of the Canadian Ministry of Agriculture Strategic Research Program. “Wheat accounts for almost 20% of the calories humans consume worldwide, so a strong focus on improving the yield and quality of wheat is essential for our future food supply.”
Read more at NRGene