Not long ago in the southwest of England, a local community set out to replace a 1960s-vintage school with a new building using triple-pane windows and super-insulated walls to achieve the highest possible energy efficiency. The new school proudly opened on the same site as the old one, with the same number of students, and the same head person—and was soon burning more energy in a month than the old building had in a year.
Not long ago in the southwest of England, a local community set out to replace a 1960s-vintage school with a new building using triple-pane windows and super-insulated walls to achieve the highest possible energy efficiency. The new school proudly opened on the same site as the old one, with the same number of students, and the same head person—and was soon burning more energy in a month than the old building had in a year.
The underfloor heating system in the new building was so badly designed that the windows automatically opened to dump heat several times a day even in winter. A camera in the parking lot somehow got wired as if it were a thermal sensor, and put out a call for energy any time anything passed in front of the lens. It was “a catalogue of disasters,” according to David Coley, a University of Bath specialist who came in to investigate.
Many of the disasters were traceable to the building energy model, a software simulation of energy use that is a critical step in designing any building intended to be green. Among other errors, the designers had extrapolated their plan from a simplified model of an isolated classroom set in a flat landscape, with full sun for much of the day. That dictated window tinting and shading to reduce solar gain. Nobody seems to have noticed that the new school actually stood in a valley surrounded by shade trees and needed all the solar gain it could get. The classrooms were so dark the lights had to be on all day.
Read more at Yale Environment 360
Photo credit: US EPA via Flikr