IU chemists create molecular 'leaf' that collects and stores solar power without solar panels

Typography

An international team of scientists led by Liang-shi Li at Indiana University has achieved a new milestone in the quest to recycle carbon dioxide in the Earth’s atmosphere into carbon-neutral fuels and others materials.

The chemists have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of "carbon reduction."

An international team of scientists led by Liang-shi Li at Indiana University has achieved a new milestone in the quest to recycle carbon dioxide in the Earth’s atmosphere into carbon-neutral fuels and others materials.

The chemists have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of "carbon reduction."

The process is reported today in the Journal of the American Chemical Society.

"If you can create an efficient enough molecule for this reaction, it will produce energy that is free and storable in the form of fuels," said Li, associate professor in the IU Bloomington College of Arts and Sciences' Department of Chemistry. "This study is a major leap in that direction."

Burning fuel -- such as carbon monoxide -- produces carbon dioxide and releases energy. Turning carbon dioxide back into fuel requires at least the same amount of energy. A major goal among scientists has been decreasing the excess energy needed.

Read more at Indiana University

Image: The new molecule employs a nanographene complex (on left) to absorb light and drive the conversion of carbon dioxide (upper center) to carbon monoxide (on right).

Credit: Ben Noffke and Richard Schaugaard, Indiana University