Diamond's 2-billion-year growth charts tectonic shift in early Earth's carbon cycle

Typography

A study of tiny mineral ‘inclusions’ within diamonds from Botswana has shown that diamond crystals can take billions of years to grow. One diamond was found to contain silicate material that formed 2.3 billion years ago in its interior and a 250 million-year-old garnet crystal towards its outer rim, the largest age range ever detected in a single specimen. Analysis of the inclusions also suggests that the way that carbon is exchanged and deposited between the atmosphere, biosphere, oceans and geosphere may have changed significantly over the past 2.5 billion years.

A study of tiny mineral ‘inclusions’ within diamonds from Botswana has shown that diamond crystals can take billions of years to grow. One diamond was found to contain silicate material that formed 2.3 billion years ago in its interior and a 250 million-year-old garnet crystal towards its outer rim, the largest age range ever detected in a single specimen. Analysis of the inclusions also suggests that the way that carbon is exchanged and deposited between the atmosphere, biosphere, oceans and geosphere may have changed significantly over the past 2.5 billion years.

‘Although a jeweller would consider diamonds with lots of inclusions to be flawed, for a geologist these are the most valuable and exciting specimens,’ said Prof Gareth Davies, of Vrije Universiteit (VU) Amsterdam, who co-authored the study. ‘We can use the inclusions to date different parts of an individual diamond, and that allows us to potentially look at how the processes that formed diamonds may have changed over time and how this may be related to the changing carbon cycle on Earth.’

Sixteen diamonds from two mines in north eastern Botswana were analysed in the study: seven specimens from the Orapa mine and nine from the Letlhakane mine. A team at VU Amsterdam measured the radioisotope, nitrogen and trace element contents of inclusions within the diamonds. Although the mines are located just 40 kilometres apart, the diamonds from the two sources had significant differences in the age range and chemical composition of inclusions.

Read more at Europlanet

Image Credits: M. Gress, VU Amsterdam