OCEANIC 'HEAT SINK'

Typography

A new multi-institutional study of the so-called global warming “hiatus” phenomenon — the possible temporary slowdown of the global mean surface temperature (GMST) trend said to have occurred from 1998 to 2013 — concludes the hiatus simply represents a redistribution of energy within the Earth system, which includes the land, atmosphere and the ocean.

In a paper published today in Earth’s Future, a journal of the American Geophysical Union, lead author Xiao-Hai Yan of the University of Delaware, along with leading scientists from the National Oceanic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR), National Aeronautics and Space Administration (NASA), Scripps Institution of Oceanography, and University of Washington, discuss new understandings of the global warming “hiatus” phenomenon.

A new multi-institutional study of the so-called global warming “hiatus” phenomenon — the possible temporary slowdown of the global mean surface temperature (GMST) trend said to have occurred from 1998 to 2013 — concludes the hiatus simply represents a redistribution of energy within the Earth system, which includes the land, atmosphere and the ocean.

In a paper published today in Earth’s Future, a journal of the American Geophysical Union, lead author Xiao-Hai Yan of the University of Delaware, along with leading scientists from the National Oceanic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR), National Aeronautics and Space Administration (NASA), Scripps Institution of Oceanography, and University of Washington, discuss new understandings of the global warming “hiatus” phenomenon.

In particular, the researchers point to the prominent role played by the global ocean in absorbing the extra heat from the atmosphere by acting as a “heat sink” as an explanation for the observed decrease in GMST, which is considered a key indicator of climate change.

“The hiatus period gives scientists an opportunity to understand uncertainties in how climate systems are measured, as well as to fill in the gap in what scientists know,” explained Yan, Mary A.S. Lighthipe Chaired Professor in the College of Earth, Ocean, and Environment and director of UD’s Center for Remote Sensing.

Continue reading at the University of Delaware

Photo Credits: University of Delaware