Using statistically modeled maps drawn from satellite data and other sources, U.S. Geological Survey scientists have projected that the near-surface permafrost that presently underlies 38 percent of boreal and arctic Alaska would be reduced by 16 to 24 percent by the end of the 21st century under widely accepted climate scenarios. Permafrost declines are more likely in central Alaska than northern Alaska. 

Northern latitude tundra and boreal forests are experiencing an accelerated warming trend that is greater than in other parts of the world.  This warming trend degrades permafrost, defined as ground that stays below freezing for at least two consecutive years. Some of the adverse impacts of melting permafrost are changing pathways of ground and surface water, interruptions of regional transportation, and the release to the atmosphere of previously stored carbon. 

Read more ...

Food deserts, vast expanses of urban and rural areas that are void of fresh fruit and veggies, are a growing epidemic — affecting more than 23.5 million people nationwide. Disproportionately affecting occupants of poor, low-income neighborhoods, food deserts are the result of a lack of access to healthy food.

 

Read more ...

More than 190 countries are meeting in Paris next week to create a durable framework for addressing climate change and to implement a process to reduce greenhouse gases over time. A key part of this agreement would be the pledges made by individual countries to reduce their emissions.

A study published in Science today shows that if implemented and followed by measures of equal or greater ambition, the Paris pledges have the potential to reduce the probability of the highest levels of warming, and increase the probability of limiting global warming to 2 degrees Celsius.

In the lead up to the Paris meetings, countries have announced the contributions that they are willing to make to combat global climate change, based on their own national circumstances. These Intended Nationally Determined Contributions, or INDCs, take many different forms and extend through 2025 or 2030.

Read more ...

The global population is expected to increase by two to three billion people by 2050, a projection raising serious concerns about sustainable development, biodiversity and food security, but new research led by Princeton University shows that more efficient use of nitrogen fertilizers may address both environmental issues and crop production.

Today, more than half of the world's population is nourished by food grown with fertilizers containing synthetic nitrogen, which is needed to produce high crop yields. Plants take the nitrogen they need to grow, and the excess is left in the ground, water and air. This results in significant emissions of nitrous oxide, a potent greenhouse and ozone-depleting gas, and other forms of nitrogen pollution, including chemical over-enrichment of lakes and rivers and contamination of drinking water. 

Read more ...

Computer simulations have allowed scientists to work out how a puzzling 555-million-year-old organism with no known modern relatives fed, revealing that some of the first large, complex organisms on Earth formed ecosystems that were much more complex than previously thought.

The international team of researchers from Canada, the UK and the USA, including Dr Imran Rahman from the University of Bristol, studied fossils of an extinct organism called Tribrachidium, which lived in the oceans some 555 million years ago.  Using a computer modelling approach called computational fluid dynamics, they were able to show that Tribrachidium fed by collecting particles suspended in water.  This is called suspension feeding and it had not previously been documented in organisms from this period of time.

Read more ...

Industrial-scale batteries, known as flow batteries, could one day usher in widespread use of renewable energy—but only if the devices can store large amounts of energy cheaply and feed it to the grid when the sun isn’t shining and the winds are calm. That’s something conventional flow batteries can’t do. Now, researchers report that they’ve created a novel type of flow battery that uses lithium ion technology—the sort used to power laptops—to store about 10 times as much energy as the most common flow batteries on the market. With a few improvements, the new batteries could make a major impact on the way we store and deliver energy.

Read more ...

More Articles ...

Subcategories