A new study predicts that warming temperatures will contribute to the release into the atmosphere of carbon that has long been locked up securely in the coldest reaches of our planet.

Soil and climate expert Katherine Todd-Brown, a scientist at the Department of Energy's Pacific Northwest National Laboratory, is an author of the paper, published in the Dec. 1 issue of the journal Nature, which draws upon data collected through 49 separate field experiments around the world.

The research was led by Thomas Crowther, formerly of Yale and now at the Netherlands Institute of Ecology, and colleague Mark Bradford at Yale. Scientists from more than 30 institutions across the globe, including PNNL, collaborated on the study.

Read more ...

Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion. The largest U.S. impacts of tornadoes result from tornado outbreaks, sequences of tornadoes that occur in close succession. Last spring a research team led by Michael Tippett, associate professor of applied physics and applied mathematics at Columbia Engineering, published a study showing that the average number of tornadoes during outbreaks—large-scale weather events that can last one to three days and span huge regions—has risen since 1954. But they were not sure why.

In a new paper, published December 1 in Science via First Release, the researchers looked at increasing trends in the severity of tornado outbreaks where they measured severity by the number of tornadoes per outbreak. They found that these trends are increasing fastest for the most extreme outbreaks. While they saw changes in meteorological quantities that are consistent with these upward trends, the meteorological trends were not the ones expected under climate change.

Read more ...

Whether intentionally set to consume agricultural waste or naturally ignited in forests or peatlands, open-burning fires impact the global climate system in two ways which, to some extent, cancel each other out. On one hand, they generate a significant fraction of the world’s carbon dioxide emissions, which drive up the average global surface temperature. On the other hand, they produce atmospheric aerosols, organic carbon, black carbon, and sulfate-bearing particulates that can lower that temperature either directly, by reflecting sunlight skyward, or indirectly, by increasing the reflectivity of clouds. Because wildfire aerosols play a key role in determining the future of the planet’s temperature and precipitation patterns, it’s crucial that today’s climate models — upon which energy and climate policymaking depend — accurately represent their impact on the climate system.

Read more ...

Coral genotypes can survive for thousands of years, possibly making them the longest-lived animals in the world, according to researchers at Penn State, the National Marine Fisheries Service and Dial Cordy & Associates.

The team recently determined the ages of elkhorn corals  — Acropora palmata — in Florida and the Caribbean and estimated the oldest genotypes to be over 5,000 years old. The results are useful for understanding how corals will respond to current and future environmental change.

Read more ...

Wildlife ecologists who study the effects of climate change assume, with support from several studies, that warming temperatures caused by climate change are forcing animals to move either northward or upslope on mountainsides to stay within their natural climate conditions.

But a new study of lowland and higher-mountain bird species by wildlife ecologists Bill DeLuca and David King at the University of Massachusetts Amherst now reports an unexpected and “unprecedented” inconsistency in such shifts. The majority of the mountain bird community responded against expectation and shifted downslope despite warming trends in the mountains. They say the result “highlights the need for caution when applying conventional expectations to species’ responses to climate change.”

Read more ...

March 2012 was unusually warm. Biomass crops around the Midwest were well established and thriving. But when a late frost came in mid-April, all of that changed.

“When I went out in the morning, I was just shocked,” says University of Illinois agronomist D.K. Lee. “All the grasses were covered in frost. By noon, Miscanthus and switchgrass had turned black. The only plant that was untouched was prairie cordgrass.”

Read more ...

More Articles ...

Subcategories