If water rates continue rising at projected amounts, the number of U.S. households unable to afford water could triple in five years, to nearly 36 percent, finds new research by a Michigan State University scholar.
articles
Scientists identify protein central to immune response against tuberculosis bacteria
UT Southwestern Medical Center researchers have identified a protein that is central to the immune system’s ability to recognize and destroy the bacterium responsible for the global tuberculosis (TB) epidemic.
Changing climate changes soils
The hottest months. The snowiest winters. Catastrophic floods and droughts.
Climate change impacts lives across the world in drastic and unpredictable ways. This unpredictability also extends to the more subtle – yet still important – effects of climate change.
For example, it is uncertain how climate change will affect soils and their ability to support productive farms or healthy natural ecosystems.
PRESSURE FROM GRAZERS HASTENS ECOSYSTEM COLLAPSE FROM DROUGHT
Extreme droughts, intensified by a warming climate, are increasingly causing ecosystem collapse in many regions worldwide. But models used by scientists to predict the tipping points at which drought stress leads to ecosystem collapse have proven unreliable and too optimistic.
A new study by scientists at Duke University and Beijing Normal University may hold the answer why.
The researchers found that these tipping points can happen much sooner than current models predict because of the added pressures placed on drought-weakened plants by grazing animals and fungal pathogens.
Campus greenhouse gas emissions down 7 percent since 2014
MIT’s total campus emissions have dropped by 7 percent since 2014, according to MIT’s second annual greenhouse gas inventory. The inventory, whose results were released by the MIT Office of Sustainability in collaboration with the Department of Facilities and the Environment, Health and Safety Office, measured campus emissions in fiscal year 2016, which runs from July 2015 through June 2016. The analysis provides a wealth of data to inform MIT’s carbon-reduction strategies going forward.
CWRU researchers directly measure how perovskite solar films efficiently convert light to power
Measurement shows potential for building better solar cells by imaging fundamental properties of the material
Solar cells made with films mimicking the structure of the mineral perovskite are the focus of worldwide research. But only now have researchers at Case Western Reserve University directly shown the films bear a key property allowing them to efficiently convert sunlight into electricity.
Identifying that attribute could lead to more efficient solar panels.