The distant planet GJ 1132b intrigued astronomers when it was discovered last year. Located just 39 light-years from Earth, it might have an atmosphere despite being baked to a temperature of around 450 degrees Fahrenheit. But would that atmosphere be thick and soupy or thin and wispy? New research suggests the latter is much more likely.

Harvard astronomer Laura Schaefer (Harvard-Smithsonian Center for Astrophysics, or CfA) and her colleagues examined the question of what would happen to GJ 1132b over time if it began with a steamy, water-rich atmosphere.

Read more ...

A new photosynthesis discovery at The University of Queensland may help breed faster-growing wheat crops that are better adapted to hotter, drier climates.

A research team led by Queensland Alliance for Agriculture and Food Innovation researcher Professor Robert Henry has today published a paper in Scientific Reports, showing that photosynthesis occurs in wheat seeds as well as in plant leaves.

"This discovery turns half a century of plant biology on its head," Professor Henry said.

"Wheat covers more of the earth than any other crop, so the ramifications of this discovery could be huge. It may lead to better, faster-growing, better-yielding wheat crops in geographical areas where wheat currently cannot be grown."

 

Read more ...

The more it swarms, crawls and flies the better it is for humans. This is the finding of a study published in "Nature". More than 60 researchers from a number of universities were involved, including the Technical University of Munich, the Institute of Plant Sciences at the University of Bern and the Senckenberg Biodiversity and Climate Research Centre in Frankfurt. A diverse ecosystem populated by many species from all levels of the food chain provides higher levels of ecosystem services, the team reports. Even rather unpopular insects and invisible soil-dwelling organisms are important in maintaining a wide range of ecosystem services. The results underline the necessity of maintaining species-rich ecosystems for the good of humanity.

Read more ...

With temperatures soaring across the UK, our ability to detect and avoid places that are too warm is vital for regulating our body temperature. However, until now, little was known about the molecular mechanisms responsible for detecting warmth in the sensory neurons of our skin.

A new King's College London study, published today in Nature, reveals that a gene called TRPM2 initiates a 'warm' signal in mice that drives them to seek cooler environments. When this gene is removed, the mice are unable to distinguish between cool and warm temperatures.

Read more ...

More Articles ...

Subcategories