A type of bacteria accidentally discovered during research supported by the Engineering and Physical Sciences Research Council (EPSRC) could fundamentally re-shape efforts to cut the huge amount of electricity consumed during wastewater clean-up.

The discovery has upended a century of conventional thinking. The microorganisms - 'comammox' (complete ammonia oxidising) bacteria - can completely turn ammonia into nitrates. Traditionally, this vital step in removing nitrogen from wastewater has involved using two different microorganisms in a two-step approach: ammonia is oxidised into nitrites that are then oxidised into nitrates, which are turned into nitrogen gas and flared off harmlessly.

Read more ...

Scientists the world over are working to predict how climate change will affect our planet. It is an extremely complex puzzle with many moving parts, but a few patterns have been consistent, including the prediction that farming as we know it will become more difficult.

Scientists infer the impact on agriculture based on predictions of rainfall, drought intensity, and weather volatility. Until now, however, the average farmer may not have been able to put predictions like these into practice. A new University of Illinois study puts climate change predictions in terms that farmers are used to: field working days.

Read more ...

Where is marine litter concentrated, and which species and ecosystems does it affect? Researchers at the Alfred Wegener Institute have for the first time compiled all scientific data published on marine litter in a single, comprehensive database, now accessible from the online portal AWI Litterbase (www.litterbase.org). Here, both the distribution of litter and its interactions with organisms are presented in global maps. In addition, the regularly updated datasets are fed into graphic analyses, which show e.g. that seabirds and fish are particularly affected by litter. The latest interaction analysis shows that 34 per cent of the species monitored ingest litter, 31 per cent colonise it, and 30 per cent get entangled or otherwise trapped in it (for all figures: valid as of 23 March 2017). The total number of affected species is rising steadily and is currently at 1,220 – more than twice the number reported in the last review article. These numbers will change as the database is being updated regularly.

Read more ...

For almost a decade, researchers from Bochum have been developing biotechnological methods for hydrogen production. Green algae might be the key.

Researchers at Ruhr-Universität Bochum have analysed how green algae manufacture complex components of a hydrogen-producing enzyme. The enzyme, known as the hydrogenase, may be relevant for the biotechnological production of hydrogen.

To date, little is known about the way organisms form this type of hydrogenases under natural conditions. Using novel synthetic biology methods, the team around Dr Anne Sawyer, PhD student Yu Bai, assistant professor Dr Anja Hemschemeier and Prof Dr Thomas Happe from the Bochum-based research group Photobiotechnology, discovered that a specific protein machinery in the green algal chloroplasts is required for the production of a functional hydrogenase. The researchers published their findings in “The Plant Journal”.

Read more ...

More Articles ...

Subcategories