A University of Oklahoma Civil Engineering and Environmental Science Professor Robert Nairn and his co-authors have conducted a collaborative study that suggests exposure to trace metals from potatoes grown in soil irrigated with waters from the Potosi mining region in Bolivia, home to the world’s largest silver deposit, may put residents at risk of non-cancer health illnesses.
articles
Nanoalloys ten times as effective as pure platinum in fuel cells
A new type of nanocatalyst can result in the long-awaited commercial breakthrough for fuel cell cars. Research results from Chalmers University of Technology and Technical University of Denmark show that it is possible to significantly reduce the need for platinum, a precious and rare metal, by creating a nanoalloy using a new production technique. The technology is also well suited for mass production.
“A nano solution is needed to mass-produce resource-efficient catalysts for fuel cells. With our method, only one tenth as much platinum is needed for the most demanding reactions. This can reduce the amount of platinum required for a fuel cell by about 70 per cent”, says Björn Wickman, researcher at the Department of Physics at Chalmers.
Going with the flow: The forces that affect species' movements in a changing climate
A new study published in Scientific Reports provides novel insight into how species’ distributions change from the interaction between climate change and ocean currents.
Natural gas facilities with no CO2 emissions
How can we burn natural gas without releasing CO2 into the air? This feat is achieved using a special combustion method that TU Wien has been researching for years: chemical looping combustion (CLC). In this process, CO2 can be isolated during combustion without having to use any additional energy, which means it can then go on to be stored. This prevents it from being released into the atmosphere.
The method had already been applied successfully in a test facility with 100 kW fuel power. An international research project has now managed to increase the scale of the technology significantly, thus creating all the necessary conditions to enable a fully functional demonstration facility to be built in the 10 MW range.
Secret weapon of smart bacteria tracked to "sweet tooth"
Researchers have figured out how a once-defeated bacterium has re-emerged to infect cotton in a battle that could sour much of the Texas and U.S. crop.
Graphene on silicon carbide can store energy
By introducing defects into the perfect surface of graphene on silicon carbide, researchers at LiU have increased the capacity of the material to store electrical charge. This result, which has been published in the scientific journal Electrochimica Acta, increases our knowledge of how this ultrathin material can be used.
The thinnest material ever produced, graphene, consists of a single layer of carbon atoms. They form a chicken-wire structure one atom thick, with unique properties. It is around 200 times stronger than steel, and highly flexible. It is transparent, but gases and liquids cannot pass through it. In addition, it is an excellent conductor of electricity. There are many ideas about how this nanomaterial can be used, and research into future applications is intense.