Scientists from Tomsk Polytechnic University are developing a technology for fuel production from coal processing wastes. This fuel is ten times more environmentally friendly that will make it possible to resolve two problems at once: to reduce the amount of anthropogenic emissions of TPSs and efficiently dispose wastes from coal processing and beneficiation. The research team of the Department of Automation of Thermal Power Processes led by Professor Pavel Strizhak shares its outcomes.
articles
High-pressure experiments solve meteorite mystery
With high-pressure experiments at DESY's X-ray light source PETRA III and other facilities, a research team around Leonid Dubrovinsky from the University of Bayreuth has solved a long standing riddle in the analysis of meteorites from Moon and Mars. The study, published in the journal Nature Communications, can explain why different versions of silica can coexist in meteorites, although they normally require vastly different conditions to form. The results also mean that previous assessments of conditions at which meteorites have been formed have to be carefully re-considered.
Tulane researchers help find possible explanation for unparalleled spread of Ebola virus
The world may be closer to knowing why Ebola spreads so easily thanks to a team of researchers from Tulane University and other leading institutions who discovered a new biological activity in a small protein from the deadly virus. The team’s findings were recently published in the Journal of Virology.
Data from satellite imagery useful for malaria early warning systems
Researchers at Umeå University have developed a model that uses seasonal weather data from satellite images to accurately predict outbreak of malaria with a one-month lead time. With a so-called GAMBOOST model, a host of weather information gathered from satellite images can be used as a cost-effective disease forecasting model, allowing health officials to get ahead of the malaria infection curve by allocating resources and mobilizing public health responses. The model was recently described in the journal Scientific Reports, a Nature Research publication.
Newly identified gene helps time spring flowering in vital grass crops
Winter is no time to flower, which is why so many plants have evolved the ability to wait for the snow to melt before investing precious resources in blooms.
Waking up to flower as the warmer, longer days of spring arrive — and the risk of a damaging frost recedes — requires a process called vernalization, in which flowering is blocked until the plant senses a sufficient cold spell. Researchers at the University of Wisconsin–Madison have identified a gene that keeps grasses from entering their flowering cycle until the season is right, a discovery that may help plant breeders and engineers get more from food and energy crops.
Fungi awake bacteria from their slumber
When a soil dries out, this has a negative impact on the activity of soil bacteria. Using an innovative combination of state-of-the-art analysis and imaging techniques, researchers at UFZ have now discovered that fungi increase the activity of bacteria in dry and nutrient-poor habitats by supplying them with water and nutrients. The ability of fungi to regulate drought stress in soil and thus sustain ecosystem functions is an important insight in the context of climate change.