Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids. The process is environmentally friendly: not only it works at room temperature and atmospheric pressure, but also recycles carbon dioxide, contributing to the fight against climate change.

Fatty acids are key in several industrial processes like the manufacture of soaps, plastics –such as nylon– and dyes. Experts estimate that the global market for these compounds could reach $20 billion in the next few years. Classical synthetic methods to obtain fatty acids often require toxic and hazardous reagents like carbon monoxide and extreme conditions of pressures and temperatures. Alternative methods like the derivatization of natural products are less dangerous, but lead to complicated mixtures of products that require tedious purifications.

Read more ...

A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry.

The work, reported in Polymer Degradation and Stability, provides an efficient way to re-use the expensive carbon fiber and other materials that make up the composites.

Read more ...

Researchers from the University of Antwerp and KU Leuven have succeeded in developing a process that purifies air and, at the same time, generates power. The device must only be exposed to light in order to function.

Read more ...

Migratory mule deer in Wyoming closely time their movements to track the spring green-up, providing evidence of an underappreciated foraging benefit of migration, according to a study by University of Wyoming and U.S. Geological Survey scientists at the Wyoming Cooperative Fish and Wildlife Research Unit.

Read more ...

Mercury is a powerful poison. It can cause brain damage, tremors, paralysis and death.

But two researchers at the University of Ottawa’s Department of Biology have found a way to neutralize this toxic metal by pitting it against a small but mighty foe — a group of microorganisms known as purple non-sulphur bacteria.

Read more ...

More Articles ...

Subcategories