New research from a multi-university team of biologists shows what could be a startling drop in the amount of carbon stored in the Sierra Nevada mountains due to projected climate change and wildfire events.

The study, “Potential decline in carbon carrying capacity under projected climate-wildfire interactions in the Sierra Nevada”, published this week in Scientific Reports, shows another facet of the impact current man-made carbon emissions will have on our world if big changes aren’t made.

“What we’ve been trying to do is really understand how changing climate, increases in temperatures and decreases in precipitation, will alter carbon uptake in forests,” said University of New Mexico Assistant Professor Matthew Hurteau, a co-author on the paper. “The other aspect of this work is looking at disturbance events like large scale wildfires. Those events volatilize a lot of carbon and can kill many trees, leaving fewer trees to continue to take up the carbon.”

Read more ...

New research from the University of Cincinnati (UC) reveals that residents of the Mid-Ohio River Valley (from Evansville, Indiana, north to Huntington, West Virginia) had higher than normal levels of perfluorooctanoic acid (PFOA) based on blood samples collected over a 22-year span. The exposure source was likely from drinking water contaminated by industrial discharges upriver. 

The study, appearing in the latest publication of Environmental Pollution, looked at levels of PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in 931 Mid-Ohio River Valley residents, testing blood serum samples collected between 1991 and 2013, to determine whether the Ohio River and Ohio River Aquifer were sources of exposure. This is the first study of PFOA serum concentrations in U.S. residents in the 1990s.

Read more ...

El Niño is a recurring climate pattern characterized by warmer than usual ocean temperatures in the equatorial Pacific. Two back-to-back 3-D visualizations track the changes in ocean temperatures and currents, respectively, throughout the life cycle of the 2015-2016 El Niño event, chronicling its inception in early 2015 to its dissipation by April 2016. Blue regions represent colder and red regions warmer temperatures when compared with normal conditions.

Under normal conditions, equatorial trade winds in the Pacific Ocean blow from east to west, causing warm water to pile up in the Western Pacific, while also causing an upwelling—the rise of deep, cool water to the surface—in the Eastern Pacific. During an El Niño, trade winds weaken or, as with this latest event, sometimes reverse course and blow from west to east. As a result, the warm surface water sloshes east along the equator from the Western Pacific and temporarily predominates in the Central and Eastern Pacific Ocean. At that same time, cooler water slowly migrates westward just off the equator in the Western Pacific.

Read more ...

Transcranial direct-current stimulation (tDCS)—a non-invasive technique for applying electric current to areas of the brain—may be growing in popularity, but new research suggests that it probably does not add any meaningful benefit to cognitive training. The study is published in Psychological Science, a journal of the Association for Psychological Science.

“Our findings suggest that applying tDCS while older participants engaged in daily working memory training over four weeks did not result in improved cognitive ability,” explains researcher Martin Lövdén of Karolinska Institutet and Stockholm University.

Read more ...

Professor Steve Evans calls himself "an angry environmental optimist". Angry because he feels we are borrowing from the future, but optimistic because many of the problems with regard to the environment are perfectly solvable.

"We have reached clean energy parity," he says. "Renewable energy is not just cleaner than other forms; it is now cheaper."

Read more ...

The shells of marine organisms take a beating from impacts due to storms and tides, rocky shores, and sharp-toothed predators. But as recent research has demonstrated, one type of shell stands out above all the others in its toughness: the conch.

Now, researchers at MIT have explored the secrets behind these shells’ extraordinary impact resilience. And they’ve shown that this superior strength could be reproduced in engineered materials, potentially to provide the best-ever protective headgear and body armor.

Read more ...

More Articles ...

Subcategories