Tiny Japanese quail eggs are a small niche market in the United States, but they’re a big business in Brazil where they are sold fresh in grocery stores in egg cartons that hold 30 of the small, speckled delicacies, and are a hard-boiled staple on restaurant salad bars. Recent research from the University of Illinois helps Brazilian producers understand the birds’ behavior under wind and temperature variables and suggests environmental changes to boost their egg-laying productivity.
articles
Cutting the Cost of Ethanol, Other Biofuels and Gasoline
Biofuels like the ethanol in U.S. gasoline could get cheaper thanks to experts at Rutgers University-New Brunswick and Michigan State University.
Reconciling predictions of climate change
Harvard University researchers have resolved a conflict in estimates of how much the Earth will warm in response to a doubling of carbon dioxide in the atmosphere.
Calm Lakes on Titan Could Mean Smooth Landing for Future Space Probes
The lakes of liquid methane on Saturn’s moon, Titan, are perfect for paddling but not for surfing. New research led by The University of Texas at Austin has found that most waves on Titan’s lakes reach only about 1 centimeter high, a finding that indicates a serene environment that could be good news for future probes sent to the surface of that moon.
Engineers find way to evaluate green roofs
Green infrastructure is an attractive concept, but there is concern surrounding its effectiveness. Researchers at the University of Illinois at Urbana-Champaign are using a mathematical technique traditionally used in earthquake engineering to determine how well green infrastructure works and to communicate with urban planners, policymakers and developers.
Green roofs are flat, vegetated surfaces on the tops of buildings that are designed to capture and retain rainwater and filter any that is released back into the environment.
Bacteria collaborate to propel the ocean 'engine'
Essential microbiological interactions that keep our oceans stable have been fully revealed for the first time, by researchers at the University of Warwick.
Dr Joseph Christie-Oleza and Professor David Scanlan from the School of Life Sciences have discovered that two of the most abundant types of microorganism in the oceans – phototrophic and heterotrophic bacteria – collaborate to cycle nutrients, consequently, drawing carbon from the atmosphere and feeding the ecosystem.