If you pit a pair of gladiators, one strong and one weak, against each other 10 times the outcome will likely be the same every time: the stronger competitor will defeat the weak. But if you add into the field additional competitors of varying strength levels, even the weakest competitors might be able to survive — if only because they’re able to find a quiet corner to hide.

Read more ...

Most climate scientists agree that heavy rainfall will become even more extreme and frequent in a warmer climate. This is because warm air can hold more moisture than cold air, resulting in heavier rainfall.

However, the involved mechanisms are complex and the increase in extreme precipitation varies in space, as noted by Stephan Pfahl, climate scientist at ETH Zurich and lead author of a paper just published in the journal Nature Climate Change: “The level of atmospheric moisture is just one factor influencing the distribution and intensity of extreme precipitation. Other factors also play a key role – especially when it comes to regional variability.”

Read more ...

African farmers who are able to produce their own fertilizer from only air. Bhaskar S. Patil brings this prospect closer with a revolutionary reactor that coverts nitrogen from the atmosphere into NOx, the raw material for fertilizer. His method, in theory, is up to five times as efficient as existing processes, enabling farms to have a small-scale installation without the need for a big investment. He receives his doctorate on 10 May at Eindhoven University of Technology (TU/e).
The production of one of the key raw materials for fertilizer, ammonia (NH3) or nitrogen oxide (NOx), is a very energy-intensive process that is responsible for about 2% of all global CO2 emissions. However, it is hardly possible any longer to cut the energy consumption via current production processes since the theoretically minimal feasible energy consumption has already been more or less reached.

Read more ...

A study, published in Nature, has shown that laboratory tests of nitrogen oxide emissions from diesel vehicles significantly underestimate the real-world emissions by as much as 50 per cent.

The research, led by the International Council on Clean Transportation and Environmental Health Analytics, LLC., in collaboration with scientists at the University of York’s Stockholm Environment Institute (SEI); University of Colorado; and the International Institute for Applied Systems Analysis, examined 11 major vehicle markets representing more than 80% of new diesel vehicle sales in 2015. 

Read more ...

More Articles ...

Subcategories