Stacking Molecules Like Plates Improves Organic Solar Device Performance

Typography

Researchers from Osaka University manipulate how light-absorbing molecules fit together to improve the performance of optoelectronic devices.

Researchers from Osaka University manipulate how light-absorbing molecules fit together to improve the performance of optoelectronic devices.

Harnessing the power of the sun is vital for a clean, green future. To do so, we need optoelectronic devices, like solar cells, that can convert light into electricity efficiently. Now, a team led by Osaka University has discovered how to further improve device efficiency: by controlling how light-absorbing molecules stack together.

Organic optoelectronic devices, such as organic solar cells, are becoming increasingly sought after for their inherent advantages, e.g., flexibility or light weight. Their performance depends on how well their light-absorbing organic molecules convert light energy into ‘free-charge carriers’, which carry electric current. The energy needed to generate the free-charge carriers is referred to as ‘exciton-binding energy’.

The lower the exciton-binding energy, the easier it is to generate free-charge carriers, and thus the better the device performance. However, we still struggle to design molecules with low exciton-binding energy in a solid state.

Read more at Osaka University