Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, report scientists from Tokyo Tech.
Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, report scientists from Tokyo Tech. Produced via an innovative hydrosilane-assisted synthesis method, these phase-controlled reusable nanoparticles enable the selective hydrogenation of various compounds under mild conditions without the use of harmful gases like ammonia. These efforts could lead to more sustainable and efficient catalytic processes across many industrial fields.
Hydrogenation—the chemical reaction of hydrogen gas with another compound—is fundamental in industries such as food, pharmaceuticals, materials, and petrochemicals. Traditionally, noble metals like palladium and rhodium serve as catalysts in these reactions. However, these materials are scarce and expensive, and their mining is plagued by environmental concerns. Moreover, they demand highly controlled and energy-intensive conditions to function effectively.
In recent years, cobalt has emerged as a promising alternative to noble metal catalysts for hydrogenation. Cobalt nanoparticles (Co NPs) can catalyze hydrogenation reactions efficiently, requiring lower temperatures and pressures than noble metal catalysts. Despite the theoretical significance of the crystal phase of Co NPs in their catalytic performance, studying this has been challenging due to the lack of methods to produce Co NPs with a specific crystal phase of similar size.
Read more at: Tokyo Institute of Technology