Energy harvesting, an eco-friendly technology, extends beyond solar and wind power in generating electricity from unused or discarded energy in daily life, including vibrations generated by passing car engines or trains.
Energy harvesting, an eco-friendly technology, extends beyond solar and wind power in generating electricity from unused or discarded energy in daily life, including vibrations generated by passing car engines or trains. Recent intriguing research has been announced, aiming to enhance the efficiency of energy harvesting using a new type of metasurface that can be reconfigured, resembling the assembly of LEGO bricks.
Professor Junsuk Rho from the Departments of Mechanical Engineering, Chemical Engineering, and Electrical Engineering and PhD/MS student Geon Lee from the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH) have joined Professor Miso Kim from the School of Advanced Materials Science and Engineering at Sungkyunkwan University (SKKU) to collaborate on a research project. Together, they developed a multifunctional elastic metasurface that can be freely configured by attaching and detaching components for practical applications. This research was published in one of the international journals in materials science, Advanced Science.
Metamaterials are artificially designed structures that exploit the relationships among wavelengths to manipulate wave energy such as light, vibration, and sound. Harnessing this capability in energy harvesting allows for the gathering of elastic waves in piezoelectric components, thereby increasing the efficiency of electricity production. However, limitations in the theoretical analysis of the beams constituting metamaterials confine their operation to a single frequency and restrict their utility to specific purposes, posing challenges for their practical application in real structures.
Read more at Pohang University of Science & Technology (POSTECH)