A new study led by a University at Buffalo researcher has identified how specific communication among different brain regions, known as brain connectivity, can serve as a biomarker for attention deficit hyperactivity disorder (ADHD).
A new study led by a University at Buffalo researcher has identified how specific communication among different brain regions, known as brain connectivity, can serve as a biomarker for attention deficit hyperactivity disorder (ADHD).
The research relied on a deep architecture using machine-learning classifiers to identify with 99% accuracy those adults who had received a childhood diagnosis of ADHD many years earlier.
“This suggests that brain connectivity is a stable biomarker for ADHD, at least into childhood, even when an individual’s behavior had become more typical, perhaps by adapting different strategies that obscure the underlying disorder,” said Chris McNorgan, an assistant professor of psychology in the UB College of Arts and Sciences, and the study’s lead author.
The findings, published in the journal Frontiers in Physiology, have implications for not only detecting ADHD, a common but diagnostically slippery disorder that’s difficult to identify, but can also help clinicians target treatments by understanding where patients sit on a broad-spanning continuum.
Read more at University at Buffalo