Custom Nanoparticle Regresses Tumors When Exposed To Light

Typography

A unique nanoparticle to deliver a localized cancer treatment inhibits tumor growth in mice, according to a team of Penn State researchers.

A unique nanoparticle to deliver a localized cancer treatment inhibits tumor growth in mice, according to a team of Penn State researchers.

The nanoparticles, developed by Daniel Hayes, associate professor of biomedical engineering, have a specific chemistry that allows a microRNA (miRNA) to attach to it. A miRNA is a molecule that when paired to a messenger RNA (mRNA) prevents it from operating. In this case, it prohibits the mRNA in a cancer cell from creating proteins, which are essential for that cancer cell to survive.

In their study, the researchers delivered nanoparticles to the cancer cells of mice through an IV. Once the nanoparticles built up in the cancerous area, they used a specific wavelength of light to separate the miRNA from the nanoparticles. The miRNA then pairs with a mRNA in the cancer cell, causing the mRNA to stop making proteins. Eventually, the cancer cell dies.

Their paper appeared on June 22 in the journal Biomaterials.

Read more at Penn State