A new Tulane University study questions the reliability of how sea-level rise in low-lying coastal areas such as southern Louisiana is measured and suggests that the current method underestimates the severity of the problem.
A new Tulane University study questions the reliability of how sea-level rise in low-lying coastal areas such as southern Louisiana is measured and suggests that the current method underestimates the severity of the problem. The research is the focus of a news article published this week in the journal "Science."
Relative sea-level rise, which is a combination of rising water level and subsiding land, is traditionally measured using tide gauges. But researchers Molly Keogh and Torbjörn Törnqvist argue that in coastal Louisiana, tide gauges tell only a part of the story.
Tide gauges in such areas are anchored an average of 20 meters into the earth rather than at the ground surface. “As a result, tide gauges do not record subsidence occurring in the shallow subsurface and thus underestimate rates of relative sea-level rise,” said Keogh, a fifth year PhD student and lead author of the study.
“This study shows that we need to completely rethink how we measure sea-level rise in rapidly subsiding coastal lowlands” said Törnqvist, Vokes Geology Professor in the Tulane School of Science and Engineering.
Read more at Tulane University