The market for organic solar cells is expected to grow more than 20% between 2017 and 2020, driven by advantages over traditional silicon solar cells: they can be mass produced at scale using roll-to-roll processing; the materials comprising them can be easily found in the earth and could be applied to solar cells through green chemistry; they can be semitransparent and therefore less visually intrusive — meaning they can be mounted on windows or screens and are ideal for mobile devices; they are ultra-flexible and can stretch; and they can be ultra-lightweight.
The market for organic solar cells is expected to grow more than 20% between 2017 and 2020, driven by advantages over traditional silicon solar cells: they can be mass produced at scale using roll-to-roll processing; the materials comprising them can be easily found in the earth and could be applied to solar cells through green chemistry; they can be semitransparent and therefore less visually intrusive — meaning they can be mounted on windows or screens and are ideal for mobile devices; they are ultra-flexible and can stretch; and they can be ultra-lightweight.
Unlike silicon solar cells, however, organic cells are highly vulnerable to moisture, oxygen and sunlight itself. State-of-the-art remediation involves incapsulating the cell, which adds to production cost and unit weight, while reducing efficiency.
Researchers at the New York University Tandon School of Engineering have discovered a remarkable means of making organic solar panels more robust, including conferring resistance to oxygen, water and light by doing the opposite: removing, not adding, material.
Read more at the New York University Tandon School of Engineering