Harvard researchers have identified a whole new class of high-performing organic molecules, inspired by vitamin B2, that can safely store electricity from intermittent energy sources like solar and wind power in large batteries.
The development builds on previous work in which the team developed a high-capacity flow battery that stored energy in organic molecules called quinones and a food additive called ferrocyanide. That advance was a game-changer, delivering the first high-performance, non-flammable, non-toxic, non-corrosive, and low-cost chemicals that could enable large-scale, inexpensive electricity storage.
While the versatile quinones show great promise for flow batteries, Harvard researchers continued to explore other organic molecules in pursuit of even better performance. But finding that same versatility in other organic systems has been challenging.
Harvard researchers have identified a whole new class of high-performing organic molecules, inspired by vitamin B2, that can safely store electricity from intermittent energy sources like solar and wind power in large batteries.
The development builds on previous work in which the team developed a high-capacity flow battery that stored energy in organic molecules called quinones and a food additive called ferrocyanide. That advance was a game-changer, delivering the first high-performance, non-flammable, non-toxic, non-corrosive, and low-cost chemicals that could enable large-scale, inexpensive electricity storage.
While the versatile quinones show great promise for flow batteries, Harvard researchers continued to explore other organic molecules in pursuit of even better performance. But finding that same versatility in other organic systems has been challenging.
"Now, after considering about a million different quinones, we have developed a new class of battery electrolyte material that expands the possibilities of what we can do," said Kaixiang Lin, a Ph.D. student at Harvard and first author of the paper. "Its simple synthesis means it should be manufacturable on a large scale at a very low cost, which is an important goal of this project."
Read more: EurekAlert!
Image: A new class of high-performing organic molecules, inspired by vitamin B2, that can safely store electricity from intermittent energy sources like solar and wind power in flaw batteries
Credits: Kaixiang Lin/Harvard University