Reviving American Chestnut Trees May Mitigate Climate Change

Typography
A Purdue University study shows that introducing a new hybrid of the American chestnut tree would not only bring back the all-but-extinct species, but also put a dent in the amount of carbon in the Earth's atmosphere.

A Purdue University study shows that introducing a new hybrid of the American chestnut tree would not only bring back the all-but-extinct species, but also put a dent in the amount of carbon in the Earth's atmosphere.
Douglass Jacobs, an associate professor of forestry and natural resources, found that American chestnuts grow much faster and larger than other hardwood species, allowing them to sequester more carbon than other trees over the same period. And since American chestnut trees are more often used for high-quality hardwood products such as furniture, they hold the carbon longer than wood used for paper or other low-grade materials.

"Maintaining or increasing forest cover has been identified as an important way to slow climate change," said Jacobs, whose paper was published in the June issue of the journal Forest Ecology and Management. "The American chestnut is an incredibly fast-growing tree. Generally the faster a tree grows, the more carbon it is able to sequester. And when these trees are harvested and processed, the carbon can be stored in the hardwood products for decades, maybe longer."

At the beginning of the last century, the chestnut blight, caused by a fungus, rapidly spread throughout the American chestnut's natural range, which extended from southern New England and New York southwest to Alabama. About 50 years ago, the species was nearly gone.

!ADVERTISEMENT!

New efforts to hybridize remaining American chestnuts with blight-resistant Chinese chestnuts have resulted in a species that is about 94 percent American chestnut with the protection found in the Chinese species. Jacobs said those new trees could be ready to plant in the next decade, either in existing forests or former agricultural fields that are being returned to forested land.

Article continues:  http://www.sciencedaily.com/releases/2009/06/090610154457.htm