During the Ordovician period, the concentration of CO2 in the earth's atmosphere was about eight times higher than today. It has been hard to explain why the climate cooled and why the Ordovician glaciations took place. A new study, published in Nature Communications, shows that the weathering of rock caused by early non-vascular plants had the potential to cause such a global cooling effect.
"When we can better understand the carbon cycle in the past, we can better predict what happens with the climate in the future," says Philipp Porada of Stockholm University, one of the authors of the study.
During the Ordovician period, the concentration of CO2 in the earth's atmosphere was about eight times higher than today. It has been hard to explain why the climate cooled and why the Ordovician glaciations took place. A new study, published in Nature Communications, shows that the weathering of rock caused by early non-vascular plants had the potential to cause such a global cooling effect.
"When we can better understand the carbon cycle in the past, we can better predict what happens with the climate in the future," says Philipp Porada of Stockholm University, one of the authors of the study.
Non-vascular plants, such as mosses, hornworts and liverworts, probably evolved during the Ordovician period, around 450 million years ago. They are older than vascular plants, such as trees and grasses, and together with lichens, which are a symbiosis of fungi and algae, they formed the earliest terrestrial vegetation. Today's successors of these organisms are distributed worldwide and are characterized by their ability to survive in environments in which the supply of both water and nutrients is scarce.
Continue reading at EurekAlert!
Image: Moss growing on moist rocks along Avalanche Lake Trail via NPS.gov